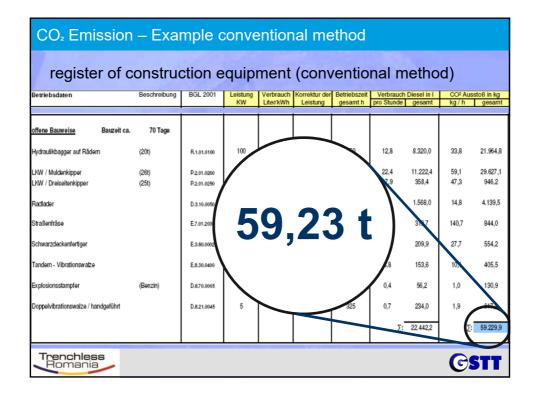
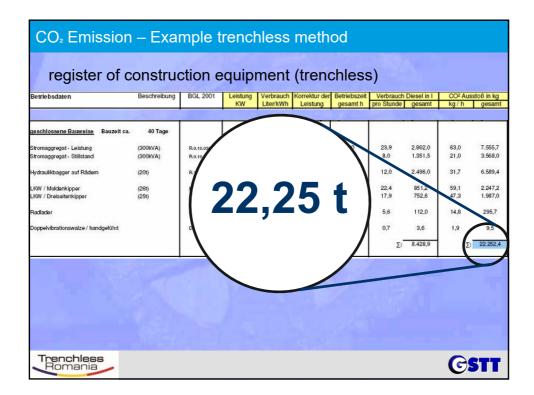
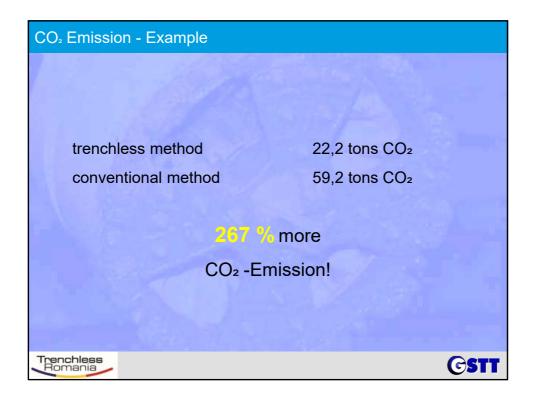
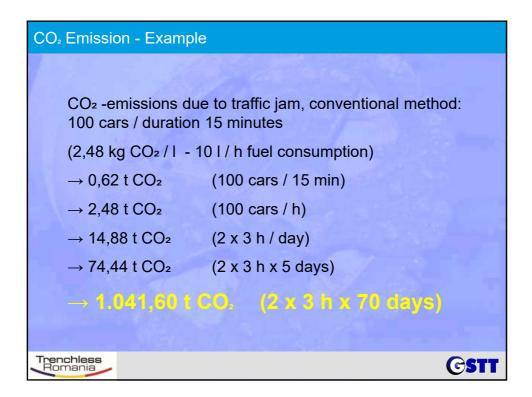


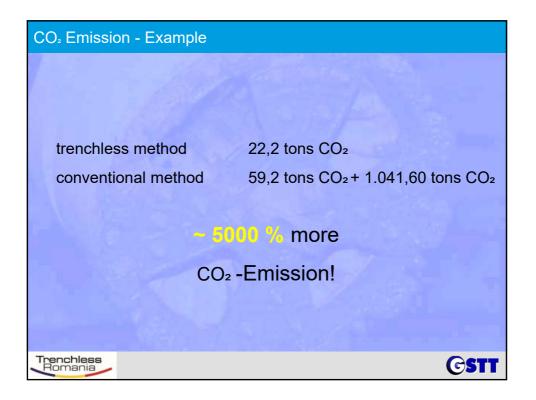
Savings as a res	ult from trenchless construction from 1984 bis 2016
Saving direc Berlin from 1	t costs in new constructions in the sewer field in 984 - 2017:
75 Mio. €	could be saved could be saved and thus invested in other projects
1,47 Mio. m ²	² Road surface had to be not broken and therefore not restored
2,7 Mio. m ³	Soil had to be excavated and not reinstalled or transported and disposed
223.000 Tru	ckloads had not be transported through the city
238 Mio. m ³	Groundwater had to be not promoted (~ water supply of Berlin for approximately 14 months)
Berliner Wasserbetriebe	GSTT

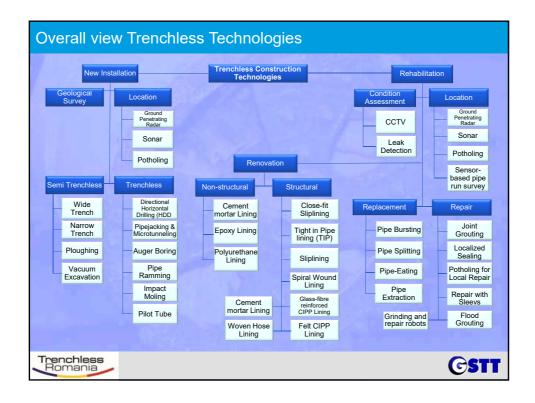



CO ₂ Emission - E	Example
Project detai	ils:
breadth: pipes:	main sewer city; 2 track road; left track; grass strip 3m 250 m 4,50 m 1,50 m DN 600 gravel/clay (density 1,70 t/m³)
litre Petrol litre Diesel (total burning	, , , , , , , , , , , , , , , , , , , ,
Trenchless Romania	CSTT


CO ₂ Emission - Example
 <u>conditions:</u> site-condition: good 100% removal of excavated soil fuel consumption (litre/kWh) (from register of construction equipment) diesel consumption in I CO₂-Emision in kg 3,154 kg CO₂/kg fuel x 0,82 kg/L (diesel) = 2,64 kg CO₂/litre treatment of asphalt: per 1 to ca. 7 - 8 I diesel <u>conventional method (70 days):</u> excavation + laying + backfilling + compaction: max. 4 m / day (without road surface)
Road finishing machine max. working breadth 2 m <u>trenchless (40 days):</u> capacity: ca. 4 pies (12 m) / day Starting pit: DN 3000/DA 3600; target pit: 2x DN2500/DA3000 construction time: 30 h


Betriebsdaten	Beschreibung	BGL 2001	Leistung	Verbrauch	Korrektur der	Betriebszeit	Verbrauch	Diesel in I	CO ² Aus	stoß in kg
			KW	Liter/kWh	Leistung	gesamt h	pro Stunde	gesamt	kg/h	gesamt
offene Bauweise Bauzeit ca.	70 Tage									
Hydraulikbagger auf Rädern	(20t)	R.1.01.0100	100	0,16	0,8	650	12,8	8.320,0	33,8	21.964,8
LKW / Muldenkipper	(26t)	P.2.01.0260	200	0,14	0,8	501	22,4	11.222,4	59,1	29.627,1
LKW / Dreiseitenkipper	(25t)	P.2.01.0250	160	0,14	0,8	20	17,9	358,4	47,3	946,2
Radlader		D.3.10.0050	50	0,16	0,7	280	5,6	1.568,0	14,8	4.139,5
Straßenfräse		E.7.01.2030	370	0,16	0,9	6	53,3	319,7	140,7	844,0
Schwarzdeckenfertiger		E.3.80.0002	82	0,16	0,8	20	10,5	209,9	27,7	554,2
Tandem - Vibrationswalze		E.8.30.0400	30	0,16	0,8	40	3,8	153,6	10,1	405,5
Explosionsstampfer	(Benzin)	D.8.70.0065	2,7	0,16	1	130	0,4	56,2	1,0	130,9
Doppelvibrationswalze / handgeführt		D.8.21.0045	5	0,16	0,9	325	0,7	234,0	1,9	617,8
Doppelvibrationswalze / handgeführt		D.8.21.0045	5	0,16	0,9	325	0,7	234,0	1,9	617,8




sgat - Leistung egat - Stillstand (300kVA) (300kVA) R.0.10.000 R.0.10.000 2265 0,15 0,6 120 23,9 2.862,0 63,0 7.555,7 agger auf Rådern (201) R.1.01.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 denklipper (251) P.2.01.0590 100 0,14 0,8 38 22,4 851,2 59,1 2.247,2 bestenklipper (251) P.2.01.0590 160 0,14 0,8 38 22,4 851,2 59,1 2.947,3 1.397,0 D.3.10.0590 50 0,16 0,7 20 5,6 112,0 14,8 295,7	Stromaggregat - Leistung itromaggregat - Stillstand (300kVA) (300kVA) Ro.10.0300 Ro.10.0300 265 0,15 0,6 120 23,9 2.862,0 63,0 7.555,7 htromaggregat - Stillstand (300kVA) Ro.10.0300 265 0,15 0,2 170 8,0 1.351,5 21,0 3.568,0 hydraulikbagger auf Rådern (201) R.1.01.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 NV / Muldenkipper (251) P.2.01.0260 200 0,14 0,8 38 22,4 851,2 59,1 2.247,2 NV / Muldenkipper (251) P.2.01.0260 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Acadader D.3.10.0660 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Oppelvibrationswalze / handgeführt D.8.21.0445 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) Stromaggregat - Stillstand (300kVA) Aydraulikbagger auf Rådern (201) IXW / Muldenkipper (261) IXW / Dreiseitenkipper (251) Radlader	R.0.10.0300 R.1.01.0100 P.2.01.0260 P.2.01.0250	265 100 200	0,15 0,15 0,14	0,2 0,8	170 208	8,0	1.351,5	21,0	3.568,0
agg1-Leistung egat-Leistung agg1-Stilland (300kVA) (300kVA) R.0.10.0000 R.0.10000 265 265 0,15 0,15 0,6 0.2 120 170 23,9 8,0 2.862,0 1.351,5 63,0 7.555,7 aggar auf Rådem (201) R.1.01.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 denkipper (261) P.2.01.0280 200 0,14 0,8 38 22,4 851,2 59,1 2.247,2 bestenkipper (251) P.2.01.0280 50 0,16 0,7 20 5,6 112,0 14,8 295,7 biotexturger / bandgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	Stromaggregat - Leistung itromaggregat - Stillstand (300kVA) (300kVA) Ro.16.0200 (300kVA) 265 0.15 0.6 120 23,9 2.862,0 63,0 7.555,7 htromaggregat - Stillstand (300kVA) Ro.16.0200 265 0.15 0.6 120 23,9 2.862,0 63,0 7.555,7 21,0 3.568,0 hydraulikbagger auf Rådern (201) R.1.01.00 100 0.15 0.8 208 12,0 2.496,0 31,7 6.589,4 NV / Muldenkipper (251) P.2.01.0200 200 0.14 0.8 38 22,4 851,2 59,1 2.247,2 NV / Muldenkipper (251) P.2.01.0200 50 0.16 0.7 20 5.6 112,0 14,8 295,7 Radiader D.3.10.0000 50 0.16 0.9 5 0.7 3,6 1,9 9,5	Stromaggregat - Leistung (300kVA) Stromaggregat - Stillstand (300kVA) Aydraulikbagger auf Rådern (201) IXW / Muldenkipper (261) IXW / Dreiseitenkipper (251) Radlader	R.0.10.0300 R.1.01.0100 P.2.01.0260 P.2.01.0250	265 100 200	0,15 0,15 0,14	0,2 0,8	170 208	8,0	1.351,5	21,0	3.568,0
ggat Stillstand (300KVA) R.0.100300 265 0,15 0.2 170 8,0 1.351,5 21,0 3.568,0 agger auf Rådem (201) R.1.01.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 denkipper (261) P.2.01.0280 200 0,14 0,8 38 22,4 851,2 59,1 2.247,2 selernkipper (251) P.2.01.0280 160 0,14 0,8 42 17,9 752,6 47,3 1.967,0 D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295,7 ationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7	ibromaggregat Sillstand (300kVA) R.0.10.000 265 0.15 0.2 170 8,0 1.351,5 21,0 3.568,0 vjoraulikbagger auf Rådem (201) R.1.01.0100 100 0.15 0.8 208 12,0 2.496,0 31,7 6.589,4 VM Muldenkipper (261) P.2.01.0200 200 0,14 0.8 38 22,4 851,2 59,1 2.247,2 V/ / Dreisutienkipper (251) P.2.01.0200 100 0,16 0,7 20 5,6 112,0 14,8 295,7 Acadader D.3.10.0000 50 0,16 0,7 20 5,6 112,0 14,8 295,7 Oppelvibrationswalze / handgeführt D.8.21.0445 5 0,16 0,9 5 0,7 3,6 1,9 9,5	itromaggregat - Stillstand (300kVA) 4ydraulikbagger auf Rådern (201) JSW / Muldenkipper (261) JSW / Dreiseitenkipper (255) Rædlader	R.0.10.0300 R.1.01.0100 P.2.01.0260 P.2.01.0250	265 100 200	0,15 0,15 0,14	0,2 0,8	170 208	8,0	1.351,5	21,0	3.568,0
orgat Stillstand (300kVA) Ro.100300 265 0,15 0,2 170 8,0 1.351,5 21,0 3.668,0 agger auf Rådem (201) R.101.0100 100 0,15 0,8 208 12,0 2.496,0 31,7 6.589,4 denklipper (261) P.2.01.0260 200 0,14 0,8 38 22,4 851,2 59,1 2.247,2 seitenklipper (251) P.2.01.0260 160 0,14 0,8 42 17,9 752,6 47,3 1.987,0 D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295,7 ationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 2,6 1,9	itromaggregat - Stillstand (300KVA) R.0.10.000 265 0.15 0.2 170 8.0 1.351,5 21,0 3.668,0 vydraulikbagger auf Rådern (201) R.101.0100 100 0.15 0.8 208 12.0 2.496,0 31,7 6.589,4 V/V Muldenkipper (261) P.201.0280 200 0.14 0.8 38 22.4 851,2 59,1 2.247,2 V/V / Muldenkipper (251) P.201.0280 160 0.14 0.8 42 17,9 752,6 47,3 1.997,0 Aadlader D.3.10.0660 50 0.16 0.7 20 5.6 112,0 14,8 295,7 Oppelvibrationswalze / handgeführt D.8.21.0445 5 0.16 0,9 5 0,7 3,6 19 9,5	itromaggregat - Stillstand (300kVA) 4ydraulikbagger auf Rådern (201) JSW / Muldenkipper (261) JSW / Dreiseitenkipper (255) Rædlader	R.1.01.0100 P.2.01.0260 P.2.01.0250	100	0,15 0,14	0,8	208	1.150			
January Structure P 2 01,0000 200 0,14 0,8 38 22.4 851,2 59,1 2.247,2 Jentkipper (251) P 2 01,0000 160 0,14 0,8 42 17,9 752,6 47,3 1.987,0 D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295,7 ationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	JWV / Muldenkipper (26t) P.2.01.0260 200 0.14 0.8 38 22.4 851.2 59.1 2.247.2 JWV / Muldenkipper (25t) P.2.01.0260 160 0.14 0.8 38 22.4 851.2 59.1 2.247.2 Avdiader (25t) P.2.01.0260 50 0.16 0.7 20 5.6 112.0 14.8 295.7 Acclader D.8.21.0445 5 0.16 0.9 5 0.7 3.6 1.9 9.5	JW / Muldenkipper (261) JW / Dreiseitenkipper (251) Radiader	P.2.01.0260 P.2.01.0250	200	0,14			12,0	2.496,0	31,7	6.589,4
seitenkipper (251) P_2.01.0250 160 0,14 0,8 42 17,9 752,6 47,3 1.987,0 D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295,7 ationswalze / handgeführt D.8.21.0045 5 0,16 0,9 5 0,7	JKW / Dreiseltenkipper (251) P.2.01.0250 160 0.14 0.8 42 17.9 752.6 47.3 1.987.0 Acdiader D.3.10.0060 50 0.16 0.7 20 5.6 112.0 14.8 295.7 Oppervibrationswalze / handgeführt D.8.21.0445 5 0.16 0.9 5 0.7 3.6 1.9 9.5	JAW / Dreiseitenkipper (25t) Radlader	P.2.01.0250			0.8					
Iseltenktpper (251) P.2.01.0250 160 0,14 0,8 42 17,9 752,6 47,3 1.987,0 D.3.10.0050 50 0,16 0,7 20 5,6 112,0 14,8 295,7 ationswaize / handgeführt D.4.21.0045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	KW / Dreiseitankipper (251) P.2.01.0250 160 0.14 0.8 42 17,9 752,6 47,3 1.987,0 kadlader D.3.10.0050 50 0.16 0,7 20 5,6 112,0 14,8 295,7 opppelvibrationswalze / handgeführt D.8.21.045 5 0,16 0,9 5 0,7 3,6 1,9 9,5	KW / Dreiseitenkipper (25t) tadlader	P.2.01.0250	160	0,14		38	22.4	851.2	59,1	2,247,2
ationswalze / handgeführt D.8.21.0445 5 0,16 0,9 5 0,7 <u>3,6</u> 1,9 <u>9,5</u>	Doppelvibrationswalze / handgeführt D.8.21.045 5 0.16 0.9 5 0.7 <u>3.6</u> 1.9 <u>9.5</u>		D.3.10.0050				42	17,9	752,6		1,987,0
		Doppelvibrationswalze / handgeführt		50	0,16	0,7	20	5,6	112,0	14,8	295,7
Σ: 8.428,9 Σ: 22.252,4	Σ: 8.428,9 Σ: 22.252,4		D.8.21.0045	5	0,16	0,9	5	0,7	3,6	1,9	9,5
								Σ:	8.428,9	Σ:	22.252,
									1		

